PORTAL DE CIENCIA Y FICCIÓN

Programa que aprende el sentido común humano

Programa que aprende el sentido común humano

Popular
  
 
0.0 (0)
1819  
Escribir Opinión
¿Cabría una jirafa en un coche? Cualquier persona podría contestar sin necesidad de pensar demasiado o estudiarlo con antelación. Atendiendo al sentido común la respuesta sería negativa, dada la voluminosa masa corporal del animal.
El Santo Grial de la computación, es conseguir una máquina capaz de pensar por sí misma utilizando en cierta forma el sentido común.
Un equipo de investigadores de la Universidad Carnegie Mellon, en Estados Unidos, ha dado un paso importante en este campo de la Inteligencia Artificial (IA), al permitir que un sistema de computación masiva navegue por millones de imágenes y sea capaz de decidir por sí mismo qué significan.
Según explica la Universidad en un comunicado, el sistema informático comenzó a mediados de julio la búsqueda de imágenes en Internet, tarea a la que dedica las 24 horas del día, los siete días de la semana.
A través de pequeños pasos, el programa debe decidir cómo se relacionan entre sí los tres millones de imágenes que ha analizado desde sus inicios. El objetivo es recrear ese sentido común inherente al ser humano, la capacidad de aprender sin necesidad de una enseñanza específica.
Los resultados del proyecto, que cuenta con la financiación del Departamento de Defensa e Investigación Naval de Estados Unidos y Google, se darán a conocer la próxima semana en la Conferencia Internacional IEEE de Visión Artificial en Sydney, Australia.

neil

NEIL aprovecha los últimos avances en visión artificial, subcampo de la IA que permite a los programas de ordenador identificar y etiquetar objetos en las imágenes. En este caso se usa para caracterizar escenas y reconocer atributos como los colores, las formas, la iluminación o los materiales; todo ello con un mínimo de supervisión humana.
Al mismo tiempo, el programa descubre poco a poco asociaciones y conexiones entre los objetos, como que los coches suelen estar en la carretera, que los edificios tienden a ser verticales o que los patos son similares a los gansos. Así, mientras por referencias textuales podría parecer que el color asociado con las ovejas es el negro, la gente -y NEIL- saben que por lo general son de color blanco.
“Las imágenes son la mejor herramienta para aprender propiedades visuales”, destaca Abhinav Gupta, profesor en el Instituto de Robótica de Carnegie Mellon. “Estas incluyen mucha información de sentido común que la gente aprende por sí misma, pero con NEIL esperamos que los ordenadores hagan lo mismo”, augura.
En poco más de cuatro meses los resultados no podían ser mejores, pues la red ha logrado identificar 1.500 objetos y 1.200 escenas, creando además 2.500 asociaciones. El sistema es incluso capaz de desarrollar subcategorías de objetos, ordenando por ejemplo los coches en función de una variedad de marcas y modelos.
De esta forma se cumple una de las principales motivaciones de los investigadores, crear la mayor base de datos visual estructurada del mundo, con objetos, escenas, acciones, atributos y relaciones contextuales etiquetadas y catalogadas, de la forma más autónoma posible.
Sin embargo, la revisión humana siempre es conveniente. De hecho, se han registrado asociaciones erróneas, como cuando el sistema relacionó al rinoceronte con una especie de antílope, y otras un tanto extrañas.
“Las personas no siempre saben cómo o qué enseñar a las computadoras”, observó Abhinav Shrivastava, estudiante de robótica miembro del equipo. “Pero sí son buenas para decirles cuándo se equivocan”.
En 1985, los investigadores de Carnegie Mellon programaron un ordenador para jugar al ajedrez; 12 años más tarde, el equipo venció al campeón mundial de ajedrez Garry Kasparov. Veremos si con el tiempo, los ordenadores desempeñarán también un encomiable sentido común.
De momento, la red de computación masiva sigue trabajando día y noche con imágenes, pero en el futuro NEIL dará el salto a Youtube, analizando vídeos para buscar conexiones entre objetos.

“Cuando empezamos el estudio no estábamos seguros de que pudiera funcionar”, recuerda el profesor. “Esto es sólo el principio”. De hecho, el lema de NEIL es “avanzo lentamente, veo y aprendo”, algo que los investigadores esperan poder mantener por mucho tiempo.

Fuentes:

Opiniones de los usuarios

No hay opiniones para este listado.
Asignar una puntuación (mientras más alta mejor es)
5
Comentarios